Latihan Mandiri Trigonometri dengan Kunci Jawaban

 Latihan mandiri trigonometri ini bisa upgrade skill dan pemahamanmu. Silakan coba sendiri tanpa melihat kunci dan cocokkan di kemudian hari.

Petunjuk Penggunaan

  1. Kerjakan soal-soal berikut secara mandiri untuk mengukur pemahaman Anda tentang trigonometri.
  2. Cobalah selesaikan tanpa melihat kunci jawaban terlebih dahulu.
  3. Periksa jawaban Anda dengan kunci yang tersedia setelah menyelesaikan semua soal.
  4. Pelajari kembali konsep yang masih belum Anda kuasai.

Bagian A: Nilai Fungsi Trigonometri

Soal 1: Tentukan nilai dari sin 150°.

Soal 2: Jika cos θ = 1/3 dan θ berada di kuadran I, tentukan nilai sin θ dan tan θ.

Soal 3: Tentukan nilai dari tan(-45°).

Soal 4: Jika sin α = 4/5 dan α berada di kuadran II, tentukan nilai cos α dan tan α.

Soal 5: Tentukan nilai dari sin 240° + cos 330°.

Bagian B: Identitas Trigonometri

Soal 6: Sederhanakan ekspresi: sin²θ sec²θ.

Soal 7: Buktikan bahwa: tan(90° – θ) = cot θ.

Soal 8: Sederhanakan ekspresi: (1 – sin θ)(1 + sin θ).

Soal 9: Jika cos α = 3/5 dan cos β = 5/13, dengan α dan β berada di kuadran I, tentukan nilai sin(α + β).

Soal 10: Tunjukkan bahwa: sin 2θ = 2 tan θ / (1 + tan²θ).

Bagian C: Aplikasi Trigonometri

Soal 11: Sebuah tangga dengan panjang 5 meter disandarkan pada dinding. Jika bagian bawah tangga berjarak 3 meter dari dinding, berapa besar sudut yang dibentuk antara tangga dan lantai?

Soal 12: Dari atas menara dengan tinggi 45 meter, sudut depresi ke suatu objek di tanah adalah 25°. Berapa jarak objek tersebut dari kaki menara?

Soal 13: Sebuah kapal berlayar 15 km dengan arah N45°E, kemudian berlayar lagi 10 km dengan arah S60°E. Tentukan jarak kapal dari titik keberangkatan (dalam kilometer, dibulatkan hingga 1 desimal).

Soal 14: Seseorang dengan tinggi 1,7 meter berdiri 20 meter dari tiang lampu jalan. Jika sudut elevasi dari mata orang tersebut (1,6 meter dari tanah) ke puncak tiang lampu adalah 28°, berapakah tinggi tiang lampu tersebut?

Soal 15: Sebuah pesawat terbang pada ketinggian 2.000 meter di atas permukaan laut. Pilot melihat dua kapal di laut dengan sudut depresi 25° dan 40°. Jika kedua kapal berada pada garis lurus dengan pesawat, berapa jarak antara kedua kapal?

Bagian D: Persamaan Trigonometri

Soal 16: Tentukan semua solusi dari persamaan sin θ = 1/2 untuk 0° ≤ θ < 360°.

Soal 17: Selesaikan persamaan berikut untuk 0° ≤ θ < 360°: 2 cos²θ – cos θ – 1 = 0.

Soal 18: Tentukan semua solusi dari persamaan sin 2θ + sin θ = 0 untuk 0° ≤ θ < 360°.

Soal 19: Selesaikan persamaan berikut untuk 0° ≤ θ < 360°: 2 cos θ + √3 = 0.

Soal 20: Tentukan semua solusi dari persamaan tan²θ = 3 untuk 0° ≤ θ < 360°.


Kunci Jawaban

Bagian A: Nilai Fungsi Trigonometri

Jawaban 1: sin 150° = sin(180° – 30°) = sin 30° = 1/2

Jawaban 2: Dengan cos θ = 1/3 (kuadran I)

  • sin²θ = 1 – cos²θ = 1 – (1/3)² = 1 – 1/9 = 8/9
  • sin θ = 2√2/3 (positif di kuadran I)
  • tan θ = sin θ / cos θ = (2√2/3) / (1/3) = 2√2

Jawaban 3: tan(-45°) = -tan 45° = -1

Jawaban 4: Dengan sin α = 4/5 (kuadran II)

  • cos²α = 1 – sin²α = 1 – (4/5)² = 1 – 16/25 = 9/25
  • cos α = -3/5 (negatif di kuadran II)
  • tan α = sin α / cos α = (4/5) / (-3/5) = -4/3

Jawaban 5:

  • sin 240° = sin(180° + 60°) = -sin 60° = -√3/2
  • cos 330° = cos(360° – 30°) = cos 30° = √3/2
  • sin 240° + cos 330° = -√3/2 + √3/2 = 0

Bagian B: Identitas Trigonometri

Jawaban 6:

  • sin²θ sec²θ = sin²θ (1/cos²θ) = sin²θ/cos²θ = tan²θ

Jawaban 7:

  • tan(90° – θ) = sin(90° – θ)/cos(90° – θ) = cos θ/sin θ = cot θ

Jawaban 8:

  • (1 – sin θ)(1 + sin θ) = 1² – sin²θ = 1 – sin²θ = cos²θ

Jawaban 9:

  • Untuk cos α = 3/5, sin α = 4/5
  • Untuk cos β = 5/13, sin β = 12/13
  • sin(α + β) = sin α cos β + cos α sin β
  • sin(α + β) = (4/5)(5/13) + (3/5)(12/13)
  • sin(α + β) = 20/65 + 36/65 = 56/65

Jawaban 10:

  • sin 2θ = 2 sin θ cos θ
  • Substitusi sin θ = tan θ cos θ:
  • sin 2θ = 2(tan θ cos θ)cos θ = 2 tan θ cos²θ
  • cos²θ = 1/(1 + tan²θ)
  • sin 2θ = 2 tan θ × 1/(1 + tan²θ) = 2 tan θ/(1 + tan²θ)

Bagian C: Aplikasi Trigonometri

Jawaban 11:

  • Menggunakan Pythagoras: mengudratkan 5² = 3² + (tinggi)²
  • Tinggi = 4 meter
  • sin θ = tinggi/panjang tangga = 4/5
  • θ = sin⁻¹(4/5) ≈ 53,1°

Jawaban 12:

  • tan 25° = 45/jarak
  • jarak = 45/tan 25° = 45/0,466 ≈ 96,57 meter

Jawaban 13:

  • Komponen timur (x) = 15 × sin 45° + 10 × sin(180° – 60°) = 15 × 0,707 + 10 × 0,866 = 10,605 + 8,66 = 19,265
  • Komponen utara (y) = 15 × cos 45° – 10 × cos(180° – 60°) = 15 × 0,707 – 10 × (-0,5) = 10,605 + 5 = 15,605
  • Jarak = √(x² + y²) = √(19,265² + 15,605²) = √(371,14 + 243,52) = √614,66 ≈ 24,8 km

Jawaban 14:

  • Misalkan tinggi tiang = h
  • tan 28° = (h – 1,6)/20
  • h – 1,6 = 20 × tan 28° = 20 × 0,532 = 10,64
  • h = 10,64 + 1,6 = 12,24 meter

Jawaban 15:

  • Jarak pesawat ke kapal pertama = 2000/tan 40° = 2000/0,839 ≈ 2383,8 meter
  • Jarak pesawat ke kapal kedua = 2000/tan 25° = 2000/0,466 ≈ 4291,8 meter
  • Jarak antara kedua kapal = 4291,8 – 2383,8

1 thought on “Latihan Mandiri Trigonometri dengan Kunci Jawaban”

  1. Pingback: Materi Trigonometri Lengkap dan Mudah Dipahami - Pintar MTK

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top